Instance-based Learning: A General Model of Repeated Binary Choice
نویسندگان
چکیده
A common practice in cognitive modeling is to develop new models specific to each particular task. We question this approach and draw on an existing theory, instance-based learning theory (IBLT), to explain learning behavior in three different choice tasks. The same instance-based learning model generalizes accurately to choices in a repeated binary choice task, in a probability learning task, and in a repeated binary choice task within a changing environment. We assert that, although the three tasks are different, the source of learning is equivalent and therefore, the cognitive process elicited should be captured by one single model. This evidence supports previous findings that instance-based learning is a robust learning process that is triggered in a wide range of tasks from the simple repeated choice tasks to the most dynamic decision making tasks. Copyright # 2010 John Wiley & Sons, Ltd. key words instance-based learning; repeated choice; decisions from experience; model comparison; probability learning; model
منابع مشابه
Instance-Based Decision Making Model of Repeated Binary Choice
We describe an instance-based model of decision-making for repeated binary choice. The model provides an accurate account of existing data of aggregate choice probabilities and individual differences, as well as newly collected data on learning and choice interdependency. In particular, the model provides a general emergent account of the risk aversion effect that does not require any metacogni...
متن کاملDifferent Learning Levels in Multiple-choice and Essay Tests: Immediate and Delayed Retention
This study investigated the effects of different learning levels, including Remember an Instance (RI), Remember a Generality (RG), and Use a Generality (UG) in multiple-choice and essay tests on immediate and delayed retention. Three-hundred pre-intermediate students participated in the study. Reading passages with multiple-choice and essay questions in different levels of learning were giv...
متن کاملبازیابی تعاملی تصاویر طبیعت با بهره گیری از یادگیری چند نمونه ای
Content-based image retrieval (CBIR) has received considerable research interest in the recent years. The basic problem in CBIR is the semantic gap between the high-level image semantics and the low-level image features. Region-based image retrieval and learning from user interaction through relevance feedback are two main approaches to solving this problem. Recently, the research in integra...
متن کاملThe Role of Inertia in Modeling Decisions from Experience with Instance-Based Learning
One form of inertia is the tendency to repeat the last decision irrespective of the obtained outcomes while making decisions from experience (DFE). A number of computational models based upon the Instance-Based Learning Theory, a theory of DFE, have included different inertia implementations and have shown to simultaneously account for both risk-taking and alternations between alternatives. The...
متن کاملThe boundaries of instance-based learning theory for explaining decisions from experience.
Most demonstrations of how people make decisions in risky situations rely on decisions from description, where outcomes and their probabilities are explicitly stated. But recently, more attention has been given to decisions from experience where people discover these outcomes and probabilities through exploration. More importantly, risky behavior depends on how decisions are made (from descript...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010